План занятия:

- 1. Циклы тепловых машин
- 2. Задачи

1. ЦИКЛЫ ТЕПЛОВЫХ МАШИН

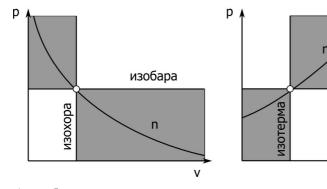
Основные соотношения для расчёта параметров термодинамических процессов в циклах тепловых машин:

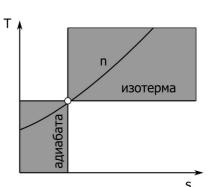
изобара

Политропный процесс

Показатель политропы: n;

Основное свойство: $pv^n = const$; $Tv^{n-1} = const$; $p^{1-n}T^n = const$;


Работа в процессе:
$$l = \frac{p_2 v_2 - p_1 v_1}{1 - n}$$
; $l = \frac{R(T_2 - T_1)}{1 - n}$; $l = \frac{RT_1}{n - 1} \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{n - 1}{n}} \right]$;


Теплоёмкость процесса: $c_{\phi} = c_{\nu} \frac{n-k}{n-1}$;

Теплота процесса: $q = c_v \frac{n-k}{n-1} (T_2 - T_1)$;

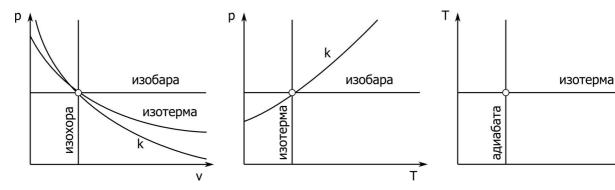
Изменение энтропии в процессе: $\Delta s = c_{_{v}} \frac{n-k}{n-1} ln \left(\frac{T_{_{2}}}{T_{_{1}}} \right)$.

Изображение на pv, Тs и pT - диаграммах:

Адиабатный процесс

Показатель адиабаты: $k = \frac{c_p}{c_y}$;

Основное свойство: $pv^k = const$; $Tv^{k-1} = const$; $p^{1-k}T^k = const$;


Работа в процессе:
$$l = \frac{p_2 v_2 - p_1 v_1}{1 - k}$$
; $l = \frac{R(T_2 - T_1)}{1 - k}$; $l = \frac{RT_1}{k - 1} \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{k - 1}{k}} \right]$;

Теплоёмкость процесса: c = 0;

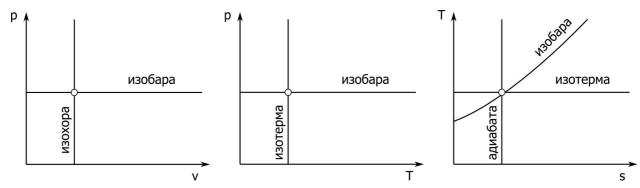
Теплота процесса: q = 0;

Изменение энтропии в процессе: $\Delta s = 0$.

Изображение на pv, Тs и pT - диаграммах:

Изобарный процесс

Основное свойство: p = const; v/T = const;


Работа в процессе: $l = p(v_2 - v_1)$; $l = R(T_2 - T_1)$;

Теплоёмкость процесса: c_p ;

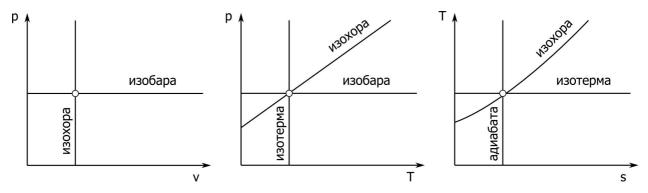
Теплота процесса: $q = c_p (T_2 - T_1)$;

Изменение энтропии в процессе: $\Delta s = c_p \ln \left(\frac{T_2}{T_1} \right); \ \Delta s = c_p \ln \left(\frac{v_2}{v_1} \right).$

Изображение на ру, Тѕ и рТ - диаграммах:

Изохорный процесс

Основное свойство: v = const; p/T = const;


Работа в процессе: l = 0;

Теплоёмкость процесса: c_v ;

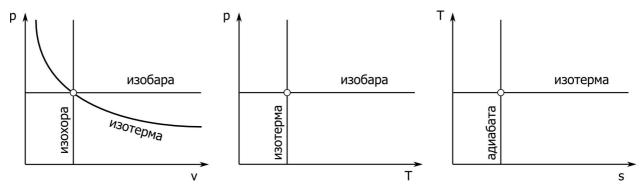
Теплота процесса: $q = c_v (T_2 - T_1)$;

Изменение энтропии в процессе: $\Delta s = c_v \ln \left(\frac{T_2}{T_1} \right); \ \Delta s = c_v \ln \left(\frac{p_2}{p_1} \right).$

Изображение на ру, Тѕ и рТ - диаграммах:

Изотермический процесс

Основное свойство: T = const; pv = const;


Работа в процессе:
$$l = \text{RT} \ln \left(\frac{\mathbf{v}_2}{\mathbf{v}_1} \right); l = \text{RT} \ln \left(\frac{\mathbf{p}_1}{\mathbf{p}_2} \right);$$

Теплоёмкость процесса: $c = \pm \infty$;

Теплота процесса: q = l;

Изменение энтропии в процессе: $\Delta s = R \ln \left(\frac{v_2}{v_1} \right); \ \Delta s = R \ln \left(\frac{p_1}{p_2} \right).$

Изображение на pv, Тs и pT - диаграммах:

Общие соотношения для термодинамических циклов

Внутренняя энергия¹: $u = c_v (T - 273,15)$;

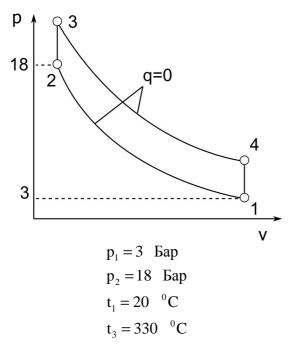
Энтальпия: $h = c_p (T - 273,15)$;

Балансы термодинамических величин в обратимом и равновесном термодинамическом цикле: $\Sigma u = 0$; $\Sigma h = 0$; $\Sigma \Delta s = 0$.

Подведённая теплота: $q_1 = \Sigma q$ при q > 0; отведённая теплота $q_2 = \Sigma q$ при q < 0.

Термический КПД цикла определяется формулой 2 :

$$\eta = \frac{q_1 - q_2}{q_1}.$$


Работа цикла: $\,l_{_{\mathrm{I\hspace{-.1em}I}}}=\Sigma l$; $\,l_{_{\mathrm{I\hspace{-.1em}I}}}=\mathrm{q}_{_{1}}$ - $\mathrm{q}_{_{2}}$.

 $^{^{1}}$ За ноль энтальпии и внутренней энергии принимают их значения при 0 $\,^{0}\mathrm{C}\,.$ q берутся по абсолютному значению

Во всех задачах расчет следует вести для воздуха со следующими характеристиками: показатель адиабаты - k=1,41; теплоёмкость при постоянном давлении - $c_p=998~\rm{Дж/(к\Gamma\cdot град)}$; теплоёмкость при постоянном объёме - $c_v=707~\rm{Дж/(к\Gamma\cdot град)}$, газовая постоянная - $R=291~\rm{Дж/(к\Gamma\cdot град)}$; молекулярная масса - $\mu=29~\rm{k\Gamma/кмоль}$.

2. ЗАДАЧИ

Задача №1 Пример задания на расчетно-графическую работу:

Вариант №30

Для заданного газового цикла, отнесённого к одному килограмму воздуха, требуется:

- определить давление, температуру, удельный объём, внутреннюю энергию, энтальпию газа в каждой точке цикла;
- для каждого процесса, составляющего цикл, определить удельную теплоёмкость, изменение внутренней энергии, изменение энтальпии и энтропии газа, теплоту и работу процесса;
- расчётным путём определить теплоту и работу цикла, термический КПД;
- определить теплоту и работу цикла, термический КПД графически и сравнить с расчётным значением.

Объём работы: 8 - 12 листов формата А4.

Расчётно-графическая работа должна быть выполнена с применением современных вычислительных средств. Расчёты параметров цикла и графическое построение должно выполнятся с применением соответствующих пакетов программ, лицензированных по коммерческим: Excel, MathCAD и др. или свободным лицензиям Calc (OpenOffice), Maxima, Inkscape, Paint.Net и др. Итоговый отчёт должен быть представлен в виде распечатки файла, подготовленного в редакторе Word или Writer (OpenOffice).